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Abstract
The current study intended to assess the hydrogeochemical processes and groundwater quality along with the identification 
of associated health risk by consuming the groundwater in the local population by collecting 70 groundwater samples for 
premonsoon and postmonsoon in the year 2015. Gibbs plot nominated that majority of the sample of Bhadohi is from rock 
dominance. The Ca/Mg ratio signifies that carbonate dissolution is the principal reason for Ca in the Bhadohi environs. 
Relatively high Na/Cl (> 1), K/Cl (> 0.02) and SO4/Cl (> 0.09) ratios are accredited to the influence of textile effluents on 
the groundwater. 45% sample in postmonsoon and 40% samples in premonsoon demonstrate high NO3 values which is 
exceeding the WHO standard for human drinking. Chronic daily intake (CDI) value demonstrates that the residents of the 
study region are at risk of nitrate contamination originated health hazards. About 48.5% of groundwater samples show a high 
concentration of iron. The HPI profile shows that 32% of the sample has high HPI values, 17% of the sample has a medium 
range of HPI, and 51% of the sample has a low value of HPI. Target health quotient values of trace metals in groundwater 
were in the order of Pb > Mn > Cr > Cd > Cu > Fe > Zn > Ni. The groundwater of the investigative area is fine for irrigation.

Keywords  Hydrogeochemistry · Groundwater pollution · Textile industry · Chronic daily intake (CDI) · Heavy metal 
pollution index (HPI) · Target health quotient (THQ)

Introduction

Groundwater is one of the great natural resources on earth. 
Moreover, water has seemed like an infinite and ample 
resource that describes human, social and economic pro-
gress. Groundwater chemistry of any region is extensively 
directed by geological formations and anthropogenic activ-
ities (Madhav et al. 2018a; Tiwari et al. 2020). Natural 

features which have control on water chemistry include pre-
cipitation form and amount, geological typeset of watershed 
and aquifer, climatic conditions and different rock–water 
interface events in the aquifer (Elangovan et al. 2018). How-
ever, the natural characteristic of groundwater has gradually 
downgraded due to various human actions (Kim et al. 2015). 
Anthropogenic activities which operate the water composi-
tion incorporate management of household and industrial 
wastewater and agricultural runoff (Arnade et al. 1999; 
Mukate et al. 2019). Urbanization, industrialization and 
agricultural activities are responsible for nitrate contamina-
tion in groundwater (Madhav et al. 2018b). Various health 
impacts are associated with the higher values of nitrate in 
drinking water. Non-carcinogenic health hazards of nitrate 
pollution were measured by Chronic Daily Intake (CDI) in 
various studies (Tiwari et al. 2015; Madhav et al. 2020).

Textile industries have emerged as a prime source of 
water pollution. These industries consume a considerable 
amount of water in their function and, therefore, discharge 
a significant amount of effluent into the environment, pri-
marily untreated (Madhav et  al. 2018b). Furthermore, 
textile effluents are reported to contain hazardous waste, 
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such as degradable organics, surfactants, pH regulating 
elements, trace metals and dyes (Giorgetti et al., 2011). 
The occurrence of metals in various paints is necessary 
for they are responsible for the colour dyes. Cu, Zn, Cr, 
Ni, Cd, Pb, and Mn are the different heavy metals allied 
with diverse dyes (Madhav et al. 2018b). Heavy metal 
contamination in groundwater is a big challenge as a high 
concentration of heavy metals imposes an adverse effect 
on human health. Human disclosure to textile dyes has 
resulted in lung and skin nuisances, body aches, innate 
deformities and nausea (Mathur et al. 2012). Heavy metal 
contamination in groundwater employing several indices 
such as HPI and THQ was done by various researchers 
(Tiwari et al. 2015; Pawar and Pawar 2016; Ahamad et al. 
2018). In the current assessment, an attempt has been 
made to identify the sources of ions in the groundwater 
and find out various hydrogeological processes affecting 
groundwater chemistry. An endeavour has been prepared 
to find out the impact of textile effluents on groundwater 
composition. Multiple indices are applied to determine 
the aptness of water for drinking and irrigation purposes. 
The adverse health impact of nitrate and heavy metals on 
human health are also analyzed in this study.

Study area

Bhadohi

Bhadohi has situated between 25.12° and 25.32° North 
Latitudes and 82.12° to 82.42° East Longitudes. Bhadohi 
is a recognized textile hub in north India. A significant 
number of textile industries are positioned and opera-
tional in Bhodohi city and adjacent areas, and treated and 
untreated effluents is usually used in agricultural activi-
ties. Large industries are situated in industrial zones but 
small in medium size industries are scattered in the city 
and creating big environmental crisis. Figure 1 shows the 
location map of the investigative region. The study area 
has a subtropical type climate with a clear monsoon effect. 
Three distinct seasons, namely, summer, rainy and winter 
occurs in this region. The average annual rainfall of the 
study area is around 1020 mm (Raju et al. 2011; Mohan 
et al. 2011; Madhav et al. 2018a). Jayad, Kharif and Rabi 
are three major crops in this region (CGWB 2013). The 
reliance of the whole region on the groundwater is the 
key motive behind the selection of this particular study 
area. An additional reason to prefer this region is its mul-
tifaceted land use pattern and high population density. A 
relatively small area shows different land-use patterns. 
Groundwater is being used for housing, irrigation as well 
as industrial purposes in this region.

Geology and hydrogeology

Bhadohi environs are situated in central Ganga Alluvial 
plain. The alluvial plain of the investigative town is geo-
logically alienated into three diverse zones, i.e., older allu-
vial upland, newer alluvial plain and Holocene to Recent 
active channels and floodplains with a gentle slope. The 
unconsolidated close to surface Pleistocene to recent flu-
vial sediments covering the more significant part of the 
Ganga plains are usually potential aquifers. The discontin-
uous sand and clay layers have formed a multilayer aquifer 
structure in the study region (Shukla and Raju 2008; Raju 
2012; Madhav et al. 2018a).

Material and method

Sampling pattern, sample containers, and storage 
of samples

Samples collection performs a crucial part in concluding 
the quality of data produced. Standard techniques and sam-
ple collection are essential to obtain good results (APHA 
2005).

Groundwater samples (35 each in premonsoon and post-
monsoon in the year 2015) were collected from bore wells 
and hand tubes. The groundwater was collected from shal-
low aquifers with an average depth of 40 m. The values of 
some parameters and concentration of some parameters, 
for instance, pH, EC, and HCO3 measured on-site. Water 

Fig. 1   Location map of the study area
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samples collected in plastic bottles were utilized for deter-
mining major anions and silica. For water samples, total 
hardness and Ca were measured by EDTA titrimetric mode 
and Mg by calculation method. Total alkalinity, HCO3, and 
Cl were also determined by the titrimetric method. Na and 
K were be measured by flame photometer, NO3, SO4 and 
SiO2 by UV spectrophotometer. 60 ml water was taken 
in the postmonsoon season for the investigation of heavy 
metals in groundwater and preserved by adding four drops 
of HNO3 to maintain pH 2. Heavy metal concentrations 
of the groundwater were examined by Atomic Absorption 
Spectrophotometer (M series AAS, Thermo Scientific, 
Cambridge, UK) with Air-Acetylene Flame. The analyti-
cal precision for the precise measurements of ions was 
determined by formulating electrical neutrality (EN %), 
which is adequate at ± 5% (Appelo and Postma 2004). All 
the samples have EN % values within ± 5% in both the 
seasons:

Chronic daily intake (CDI)

The Chronic daily intake (CDI) values can be computed 
by the following formula (Miri et al. 2018; Adimalla et al. 
2020):

where Cw is equal to the values of NO3 in water, DI is per 
day water intake (L/day), EF is exposure constancy (days/
year), EP is the mean exposure time (years), BW is average 
body weight (kg) and AT is the average time (days). Here DI 
is 2, 1.5 and 0.8 L; EP is 40, 10 and 1 year, and BW is 70, 
40 and 10 kg for an adult, children, and infants, respectively 
(Qasemi et al. 2018; Adimalla et al. 2020, 2021).

Hazard quotient (HQ) value is calculated as a division of 
the indicated dose to the reference dose as specified in the 
following formula (Radfard et al. 2018):

where RfD is the reference dose of NO3, i.e., 1.6 mg/kg/
day. If the HQ value is more than 1 are cause adverse health 
consequences on the exposed person.

(1)
EN % =

[(

∑

Cation +
∑

Anion

)

∕
(

∑

Cation −
∑

Anion

)]

× 100.

(2)CDI = (Cw × DI × EF × EP)∕(BW × AT),

(3)HQ = CDI∕RfD,

Residual sodium carbonate (RSC)

RSC is utilized to identify the harmful effects of CO3 and 
HCO3 on the water for farming function (Eaton 1950). RSC 
can be approximated by the formula specified below:

where ionic values are taken in meq/l.

Percentage of sodium (% Na)

The % Na is found by the formula given below:

where ionic values are taken in meq/l.

Sodium adsorption ratio (SAR)

The SAR value is calculated by Richard (1954) equation:

where all the ionic values are articulated in meq/l.

The heavy metal pollution index

HPI is a grading system that offers the collective outcome 
of various heavy metals in general water class (Tiwari 
et al. 2015; Raja et al. 2021). HPI is a significant way for 
the estimation of water excellence on the origin of heavy 
metal concentration. HPI has been invented and developed 
(Mohan et al. 1996) as

where Qi = sub-index of the ith element; Wi = unit weightage 
of the ith element; n = number of elements; Mi = examined 
value of heavy metal of ith element; Ii = ideal value of i 
element; Si = standard value of the ith element. The critical 
pollution index of HPI value for intake water as specified 
by Prasad and Bose (2001) is hundred. On the other hand, 
a revised scale of 3 groups has been applied in the current 
work after Edet and Offiong (2002). The groups have been 
differentiated as low, medium and high for HPI values < 15, 
15–30 and > 30, correspondingly.

(4)RSC =
(

CO3 + HCO3
)

−(Ca +Mg),

(5)% Na = (Na + K)∕(Ca +Mg + Na) × 100,

(6)SAR = Na∕
√

(Ca +Mg)∕2,

(7)HPI =

∑n

i=1
WiQi

∑n

i=1
Wi

(8)Qi =

∑n

(i=1)
{Mi(−)Ii}

∑n

(i=1)
(Si − Ii)

,
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Target hazard quotient (THQ) and potential human 
health risk

THQ in the course of water intake is computed accord-
ing to the US Environmental Protection Agency (US EPA 
2000) formula as pursue:

where EFr = disclosure regularity (365 days/year); ED = dis-
closure interval (70 years); SFI = water intake rate (5L/ per-
son/day), MCSinorg = value of heavy metal in water (µg/L); 
BWa = standard body mass (55.9 kg); ATn = time duration 
(365 days/year X EDtot) and RfD = oral reference dose (µg/
kg/day). RfD values for Fe, Mn, Cu, Zn, Pb, Cd, Ni, and Cr 
are 300, 20, 300, 40, 0.4. 0.5, 20, and 3 in that order (US 
EPA 2013; Ahamad et al. 2018; Madhav et al. 2020). The 
collective non-carcinogenic outcome for more than 1 ele-
ment can be expressed by Hazard Index (HI):

The non-carcinogenic toxic hazard is measured to be low 
if the THQ and HI value is < 1. When it is > 1, a probable 
health hazard may happen.

(9)
THQ =

(

EFr × EDtot × SFI × MCSinorg
)

∕(RfD × BWa × ATn),

(10)HI =

n
∑

i=1

HQ.

Results and discussion

General geochemistry

The statistical chart of physiochemical constituents and ionic 
ratios are accessible in Table 1.

Hydrogeochemical facies

Gibbs (1970) projected two plots to identify the hydro-
geochemical processes concerning atmospheric rainfall, 
rock–water interface, and evaporation over the command 
on groundwater chemistry. Gibbs diagram are the graphs 
of ratio of cations [(Na + K)/(Na + K + Ca)] and anions [Cl/
(Cl + HCO3)] against to TDS. Gibbs plot nominated that all 
the sample of Bhadohi is from rock dominance in premon-
soon. In contrast, in postmonsoon, all the samples are rock 
dominance except one sample, which lies in evaporation 
control (Fig. 2a, b).

Piper diagram is practised to identify the similarity and 
differences in water composition and categorized into spe-
cific water categories based on dominant ions. It is observed 
that in postmonsoon, 71.42% samples are of no dominance 
type, 11.42% samples are of Na + K type, 11.42% samples 
are of Mg type, and 5.71% samples are of Ca type, while in 
premonsoon, 91.42% samples are of no dominance, 5.71% 
samples are of Ca type, and 2.85% samples are of Ca type 

Table 1   Range of chemical parameters of groundwater in Bhadohi environs

Quality Parameter WHO limit 2011 Range % samples Exceeding the permis-
sible limit WHO 2011

Min.–Max. (Mean)

Postmonsoon Premonsoon Postmonsoon Premonsoon

pH 9.2 6.82–8.1 (7.59) 6.70–8.18 (7.41) – –
TDS (mg/L) 1500 464–1174 (670) 420–899 (636) – –
TH (mg/L) – 196–648 (373) 240–585 (371) – –
Ca (mg/L) 200 34–180 (70.23) 32–124 (68.91) – –
Mg (mg/L) 150 16.10–108.05 (48.24) 25.61–98.67 (48.48) – –
Na (mg/L) 200 39.7–174 (90.54) 23.30–154.90 (79.45) – –
K (mg/L) 12 2.2–15.6 (4.96) 1.20–13.80 (5.04) 2.85 2.85
HCO3 (mg/L) 600 240–548 (411.66) 176–536 (395.77) – –
SO4 (mg/L) 600 15.9–102.9 (47.32) 10.62–96.30 (44.39) – –
Cl (mg/L) 600 42–250 (94.25) 48–234 (86.97) – –
F (mg/L) 1.5 0.17–1.9 (0.61) 0.10–2.10 (0.47) 8.57 5.71
NO3 (mg/L) 50 10.6–198.6 (70.54) 13.12–205.39 (67.60) 45.71 42.85
Ca/ Mg – 0.28–3.32 (1.15) 0.3–2.19 (0.94) – –
Na/Cl – 0.38–3..32 (1.65) 0.45–2.96 (1.5) – –
HCO3/ (HCO3 + SO4) – 0.72–0.096 (0.87) 0.66–0.97 (0.87) – –
K/Cl – 0.03–0.66 (0.25) 0.01–0.12 (0.06) – –
SO4/ Cl – 0.09–1.15 (0.42) 0.1–1.36 (0.42) – –
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of cation facies. On the other hand in postmonsoon 91.42% 
samples are of HCO3 type, 5.71% samples are of no domi-
nance type 2.85% samples are of Cl types, while in premon-
soon, 91.42% sample is of HCO3 type, 2.85% samples are 
of no dominance, and 5.71% sample is of Cl type of anion 
facies (Fig. 3).

Hydrogeochemical processes

In Bhadohi Ca/Mg ratio varies from 0.28 to 3.32 (mean 
1.15) in postmonsoon and 0.30 to 2.19 (mean 0.94) in pre-
monsoon (Table 1). Therefore, carbonate weathering is 
the main cause of Ca in groundwater in the investigative 
region. In carbonate weathering, dolomite weathering is 
dominant over calcite weathering. However, some samples 
are above the ratio line 2, representing silicate weathering 
is also adding Ca in the groundwater at a small quantity 
(Karunanidhi et al. 2020). The role of weathering on ground-
water chemistry can be identified by a plot between TZ+ 
and HCO3. 1:1 ratio between TZ+ and HCO3 is the indica-
tion of considerable control of weathering on groundwater 
composition (Kim et al. 2004; Umar and Alam 2012). In 
the current study graph between TZ+ and HCO3 (Fig. 4a) 
reveals the predominance of ion cascade near the 1:1 line 

recommending that mineral weathering is a major cause of 
ions in the groundwater in Bhadohi. A high comparative 
ratio of HCO3/(HCO3 + SO4) (Fig. 4b) of the groundwater is 
the signal of carbonate weathering (Raju 2012; Husain et al. 
2020). In, Bhadohi the ratio between HCO3/(HCO3 + SO4) 
fluctuates from 0.72 to 0.96 with an average of 0.87 in post-
monsoon and 0.66–0.97 with an average of 0.87 in premon-
soon (Table 1). If the Na/Cl ratio is > 1, it indicates that 
silicate weathering is contributing Na in water (Meyback 
2003; Jalali 2010; Husain et al. 2020). In Bhadohi it ranges 
from 0.38 to 3.32 (mean 1.65) in postmonsoon and 0.45 t 
2.96 (mean 1.50) in premonsoon (Table 1). It indicates that 
silicate weathering is also contributing Na in groundwater.

The cation exchange progression is also a vital occur-
rence that acts a significant function to decide the 
groundwater quality. A graph between [(Na + K)–Cl] and 
[(Ca + Mg–(HOC3–SO4)] informs about the opportunity of 
the ion exchange process. If the cation exchange process 
is not occurring, all the data should plot close to the ori-
gin (Mc Lean et al. 2000; Mthembu et al. 2020). If cation 
exchange is dominant in the aquifer, there is a linear relation-
ship between [(Na + K)–Cl] and [(Ca + Mg)–(HOC3–SO4)] 
with a slope of -1 (Jalali 2007; Karunanidhi et al. 2020). 
In the Bhadohi region, the postmonsoon data plot posses a 
slope1.06, and in premonsoon data, the plot posses a slope 
0.98. This relation signifies that the ion exchange process is 
also contributing ions in the aquifer (Fig. 4c).

Anthropogenic contribution of ions

The geochemical signature of groundwater pollution owing 
to municipal household and industrial effluents is evident, 
because municipal household and industrial effluents have a 
comparatively elevated Na/Cl (> 1), K/Cl (> 0.02) and SO4 
/Cl (> 0.09) ratio (Ghabayen et al. 2006; Prasanna et al. 
2011; Etikala et al. 2020). In Bhadohi average Na/Cl ratio 
is 1.646 and 1.499, K/Cl ratio 0.052 and 0.056, and SO4/Cl 
ratio is 0.420 and 0.419 in postmonsoon and premonsoon, 
respectively (Table 1). The high proportion of Na/Cl is may 
be due to the application of NaCl in textile industries as a 
water softener and percolation of textile effluents in ground-
water (Babu et al. 2007; Patel et al. 2016). The high ratio 
of SO4 /Cl advocates the addition of SO4 by the breakdown 
of organic material present in textile effluents. Na2SO4 also 
utilized in textile processing, which added more SO4 to the 
groundwater (Sarayu and Sandhya 2012; Mountassir et al. 
2013; Aleem et al. 2020). The study area shows high values 
of NO3 with a mean value of 70.54 and 67.60 mg/L in post-
monsoon and premonsoon season, respectively. Based on 
WHO (2011) classification, 45.71% samples in postmonsoon 
and 42.85% samples in premonsoon samples show NO3 val-
ues beyond the permissible limit (Table 1). If the amount of 
NO3 in groundwater is more than 13 mg/l, it is believed to be 

Fig. 2   Mechanism controlling groundwater chemistry: a Gibbs 1 and 
b Gibbs 2
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polluted by human conducts and described human-induced 
values (Jalali 2010). Both point sources (municipal sewage) 
and non-point sources (farming activities) are contributing 
NO3 in the vadose zone of aquifers (Ahamad et al. 2018; 
Nazneen et al. 2019; Us Saba and Umar 2021). The spatial 
distribution of NO3 shows a higher concentration in a cen-
tral area of the city. The high concentration of NO3 in the 
central area of the town is due to the presence of some set-
tling ponds which contain textile effluents released by differ-
ent dye houses. The spatial distribution of NO3 in Bhadohi 
(Fig. 5a, b) shows more variation in premonsoon as compare 
to the postmonsoon. In postmonsoon poor discharge system 
of the city leads to more percolation of contaminated water 
and homogenized the NO3 concentration in the whole town.

Categorization of groundwater for domestic use

Physiochemical parameters of groundwater of the study area 
evaluated with guidelines recommended by WHO (2011) 
to figure out the appropriateness of groundwater for drink-
ing and household use (Table 2). Groundwater is catego-
rized based on its TDS values to presume the excellence 
for consumption and household use (Davis and DeWiest 
1966; Freeze and Cherry 1979). Under Davis and DeWiest 

(1966) categorization, 96% samples in postmonsoon and 
100% samples in premonsoon are permissible for drinking 
reason. Under Freez and Cherry (1979) categorization, 97% 
of samples in postmonsoon and all the samples in premon-
soon fit into a freshwater class. On the basis of Sawyer and 
Mc. Cartly (1967) cataloguing 71% samples in postmonsoon 
and 74% samples in premonsoon belong to the very hard 
category in Bhadohi (Table 2).

Evaluation of non‑carcinogenic hazard intensity 
of nitrate (NO3)

High NO3 concentration in drinking water is related to 
health difficulties, such as methemoglobinemia (Blue baby 
syndrome) in newborns stomach cancer in adults (Mad-
hav et al. 2020; Adimalla et al. 2020). NO3 reduces to 
NO2 by oxidizing the ferrous ion of haemoglobin in the 
ferric state and forms methemoglobin. Cancer-causing 
nitroso compounds are formed in the human body when 
NO3 reacts with amines and amides (Ahamad et al. 2018). 
In the current investigation, the non-carcinogenic health 
hazard for human in diverse age factions was made by the 
NO3 contamination in water. The model used for carrying 
out health hazard evaluation is under the non-carcinogenic 

Fig. 3   Relative ionic composi-
tion (after Piper 1944) (square 
symbols represent post-
monsoon and circular symbols 
represent pre-monsoon samples)
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hazard quotient model recommended by the United States 
Environmental Protection Agency (USEPA 2013).

CDI values for three varied age divisions are presented 
in Table 3.

If the HQ value is more than 1 are cause adverse health 
outcomes on the exposed human being. The result illus-
trates that HQ values of NO3 range from 0.19 to 3.55 and 
0.23–3.67 for adults, 0.25–4.65 and 0.31–4.81 for children 
and 0.53–9.93 and 0.66–10.27 for an infant in postmon-
soon and premonsoon correspondingly. The HQ values 
were more than one for 45 and 40% adult, 54 and 45.7% 
children and 88.6 and 85.7% infants in postmonsoon and 
premonsoon, respectively, signifying the groundwater have 

unpleasant health outcomes on those exposed persons of 
particular age factions (Table 3).

Categorization of groundwater for irrigation

Based on RSC, water can be graded in 3 classes, such as 
safe, marginally suitable and unsuitable. In Bhadohi, 85% 
in postmonsoon and 88% samples in the premonsoon lie in 
the safe category (Table 2).

EC and % Na plays a crucial function to conclude the 
appropriateness of groundwater for irrigation function. The 
higher concentrations of Na in water will transform soil 
permeability; as a result, the soil becomes tough to plough 
(Jeevanandam 2012; Madhav et al. 2020).

Salinity (EC) hazard

Long-term irrigation enhances the salinity of the soil. 
Increase salinity is damaging to soil and plant as high salin-
ity limit the selection of crop, hampers seed germination, 
decreases the harvest yield and eradicates the indigenous 

Fig. 4   Ionic relationships: a HCO3 and Total Cations (TZ+); b HCO3 
and (HCO3 + SO4) and c [(Ca + Mg)–(HCO3 + SO4)] and [(Na + K)–
Cl]

Fig. 5   Spatial distribution of NO3: a Post-monsoon season and b Pre-
monsoon season
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flora (Misra and Mishra 2007). Based on EC values, Rich-
ard (1954) classified the irrigational water into four groups. 
Low salinity group (C1), medium salinity group (C2), high 
salinity group (C3) and Very High salinity (C4). All the 
samples lie in high salinity hazard in postmonsoon, while in 
premonsoon, 2.85% samples lies in medium salinity hazard 
and 97.15% samples in high salinity hazard (Table 2). High 
salinity is may be due to the leaching of textile effluents into 
the groundwater (Prabha et al. 2013; Madhav et al. 2020).

Alkalinity hazards (Sodium)

The Na hazard is articulated in the term of Sodium adsorp-
tion ratio. Long-term application of water containing ele-
vated SAR demolishes the physical structure of the soil 
(Umar et al. 2001). On the basis of SAR, water can be cat-
egorized into four groups as S-1 (< 10), S-2 (10–18), S-3 

(18–26) and S-4 (> 26). In Bhadohi, all the samples in both 
seasons are lies in the S-1 type (Table 2).

Wilcox (1948) projected a model of groundwater cat-
egorization for irrigation founded on % Na and EC in a 
diagram form. Wilcox (1948) graded the water in five 
separate degrees of appropriateness for irrigation. In the 
present study, 88.58% of samples are good to permissible, 
and 11.42% of samples are admissible to unsuitable in 
postmonsoon, and all the samples are good to acceptable 
in premonsoon (Fig. 6).

U S salinity diagram (1954)

More inclusive irrigation aptness study can be achieved by 
plotting a USSL diagram, where SAR is plotted against EC 
(Richards 1954). The analytical data plotted on the USSL 

Table 2   Categorization of groundwater for different purposes

Parameter Range Classification (% of samples)

Postmonsoon Premonsoon

TDS (Davis and DeWiest 1996) < 500 Desirable for drinking 8.57 8.57
500–1000 Permissible for drinking 88.58 91.43
1000–3000 Useful for agriculture 2.85 –

TDS (Freeze and Cherry 1997) < 1000 Fresh water 97.15 100
1000–10,000 Brackish water 2.85 –
10,000–100,000 Saline water – –
> 100,000 Brine water – –

Hardness (Sawyer and Mc. Cartly, 1967) < 75 Soft – –
75–150 Slightly hard – –
150–300 Moderately hard 28.58 25.72
> 300 Very hard 71.42 74.28

% Na (meq/l) 0–20 Excellent 14.28 11.42
20–40 Good 48.57 60
40–60 Permissible 34.28 28.57
60–80 Doubtful 2.85 –
> 80 Unsuitable – –

SAR (meq/l) 0–10 Excellent 100 100
10–18 Good – –
18–26 Fair – –
> 26 Poor – –

RSC (meq/l) < 1.25 Good 85.69 88.57
1.25–2.5 Medium 11.43 8.57
> 2.5 Bad 2.86 11.43

EC (µS/cm) < 250 Low salinity hazards – –
250–750 Medium salinity hazard – 2.85
750–2250 High salinity hazard 100 97.15
> 2250 Very high salinity hazard – –
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graph exposes that the majority of the water samples fall 
in the field of C2S1 and C3S1 water (Fig. 7).

Distribution of heavy metals in groundwater

Fe in groundwater samples ranges from 28.60 to 
2016.30 µg/l with a mean value of 388.82 µg/l. 48.57% of 
samples in the study region are beyond the allowable value 
of WHO (2011) (Table 4). Iron contamination in groundwa-
ter is an outcome of the dissolution of ferruginous minerals 
in rocks and the leaching of household sewage (Raju et al. 

2011). Corrosion of iron utensils utilized in textile industries 
also adds iron contamination in groundwater (Madhav et al. 
2018b). Mn in groundwater samples ranges from 40.40 to 
145.00 µg/l, with a mean value of 76.36 µg/l (Table 4). Cu in 
groundwater samples ranges from 34.50 to 807.00 µg/l, with 
a mean concentration of 89.87 µg/l (Table 4). According 
to WHO (2011), the permissible boundary of Cu in drink-
ing water is 2000 µg/l. All the samples in the study area 
are inside the permissible limit laid by WHO (2011). The 
primary source of Cu in groundwater is Cu holding dyes 
utilized in dye houses and textile units (Malik et al. 2008; 

Table 3   Chronic daily intake 
(mg/Kg/day) and HQ values for 
three different age groups

S. no. Postmonsoon Premonsoon

CDI HQ CDI HQ CDI HQ CDI HQ CDI HQ CDI HQ

(Adult) (Children) (Infant) (Adult) (Children) (Infant)

1 0.46 0.29 0.60 0.38 1.29 0.80 0.58 0.36 0.76 0.48 1.62 1.02
2 5.15 3.22 6.77 4.23 14.43 9.02 4.19 2.62 5.51 3.44 11.74 7.34
3 0.52 0.33 0.69 0.43 1.46 0.92 1.21 0.76 1.59 0.99 3.39 2.12
4 0.30 0.19 0.40 0.25 0.85 0.53 0.96 0.60 1.26 0.79 2.70 1.69
5 1.13 0.71 1.49 0.93 3.17 1.98 0.98 0.61 1.28 0.80 2.74 1.71
6 1.20 0.75 1.58 0.99 3.37 2.11 1.10 0.69 1.45 0.90 3.09 1.93
7 0.74 0.46 0.97 0.61 2.07 1.30 0.58 0.36 0.77 0.48 1.63 1.02
8 2.83 1.77 3.71 2.32 7.92 4.95 3.15 1.97 4.14 2.59 8.83 5.52
9 1.29 0.81 1.70 1.06 3.62 2.26 1.21 0.76 1.59 0.99 3.39 2.12
10 4.87 3.04 6.39 3.99 13.62 8.52 4.78 2.99 6.28 3.92 13.39 8.37
11 1.93 1.21 2.54 1.58 5.41 3.38 2.07 1.29 2.71 1.70 5.79 3.62
12 0.67 0.42 0.89 0.55 1.89 1.18 0.48 0.30 0.63 0.39 1.34 0.84
13 1.07 0.67 1.40 0.87 2.98 1.87 1.29 0.81 1.69 1.06 3.61 2.26
14 2.95 1.85 3.87 2.42 8.27 5.17 3.02 1.89 3.96 2.47 8.44 5.28
15 5.67 3.55 7.45 4.65 15.89 9.93 5.87 3.67 7.70 4.81 16.43 10.27
16 3.79 2.37 4.98 3.11 10.62 6.64 4.00 2.50 5.25 3.28 11.20 7.00
17 4.01 2.51 5.27 3.29 11.24 7.03 3.85 2.40 5.05 3.15 10.77 6.73
18 1.29 0.81 1.70 1.06 3.62 2.27 1.18 0.74 1.55 0.97 3.32 2.07
19 1.25 0.78 1.64 1.02 3.49 2.18 1.17 0.73 1.54 0.96 3.29 2.06
20 0.99 0.62 1.30 0.81 2.77 1.73 1.10 0.68 1.44 0.90 3.07 1.92
21 3.71 2.32 4.87 3.04 10.38 6.49 5.43 3.39 7.12 4.45 15.20 9.50
22 1.83 1.14 2.40 1.50 5.12 3.20 4.19 2.62 5.50 3.44 11.73 7.33
23 1.13 0.70 1.48 0.92 3.15 1.97 1.20 0.75 1.58 0.99 3.37 2.11
24 1.63 1.02 2.13 1.33 4.55 2.85 1.44 0.90 1.89 1.18 4.04 2.52
25 0.87 0.55 1.15 0.72 2.45 1.53 0.74 0.46 0.97 0.61 2.07 1.29
26 0.79 0.49 1.03 0.64 2.20 1.38 0.52 0.33 0.69 0.43 1.47 0.92
27 0.55 0.35 0.73 0.45 1.55 0.97 0.37 0.23 0.49 0.31 1.05 0.66
28 1.99 1.25 2.62 1.64 5.58 3.49 2.21 1.38 2.89 1.81 6.18 3.86
29 3.59 2.25 4.72 2.95 10.06 6.29 1.71 1.07 2.25 1.41 4.80 3.00
30 2.68 1.68 3.52 2.20 7.50 4.69 2.39 1.50 3.14 1.96 6.70 4.19
31 0.90 0.56 1.18 0.74 2.51 1.57 0.56 0.35 0.74 0.46 1.57 0.98
32 0.9 0.56 1.18 0.74 2.52 1.58 0.64 0.40 0.84 0.53 1.792 1.12
33 5.10 3.19 6.69 4.18 14.27 8.92 0.50 0.31 0.66 0.41 1.40 0.88
34 2.07 1.30 2.72 1.70 5.81 3.63 1.93 1.21 2.53 1.58 5.40 3.38
35 0.67 0.42 0.87 0.55 1.86 1.17 0.98 0.61 1.28 0.80 2.74 1.71
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Aleem et al. 2020). Zn in groundwater samples ranges from 
20.40 to 1201.00 µg/l with a mean value of 158.18 µg/l 
(Table 4). All the samples in the study region were inside 
the permissible limit laid by WHO (2011). Pb in ground-
water samples ranges from 1.20 to 77.60 µg/l with a mean 

value of 15.80 µg/l (Table 4). 23.33% of samples are above 
the allowable limit of WHO (2011). Vehicular emission 
and leaded paint are the primary sources of Pb in the study 
region (Kumari and Maiti 2020). Lead in drinking water is 
also due to the corrosion of lead pipes and leaded paints and 
as impurities in chemicals used in textile processing (Mad-
hav et al. 2020). Cd in groundwater samples ranges from 
BDL to 6.10 µg/l with a mean value of 1.60 µg/l (Table 4). 
11.42% of samples are above the permissible limit of WHO 
(2011). The source of Cd in groundwater is from a verity 
of industries includes pigment, electroplating, and smelt-
ing (Hutton 1983; Kanwar et al. 2020). Ni in groundwater 

Fig. 6   Categorization of irrigation waters (after Wilcox 1948)

Fig. 7   Categorization of irrigation waters (after USSL 1954)

Table 4   Heavy metals 
in groundwater and their 
comparison with WHO (2011) 
standard

Heavy metal Range 
Min.–Max
(Mean)

WHO (2011)
Permissible 
Limit (µg/l)

Sample no. and % of sample Exceeding 
Permissible Limit WHO (2011)

Sample no % sample

Iron (µg/l) 28.60–2016.30
(388.82)

300 2–8,14,21, 24–28,30–31,35 48.57

Manganese (µg/l) 40.40–145.00
(76.36)

500 – –

Copper (µg/l) 34.50–807.00
(89.87)

2000 – –

Zinc (µg/l) 20.40–1201.00
(158.18)

4000 – –

Lead (µg/l) 1.20–77.60
(15.80)

10 1,5,7,10,24,25, 30 20

Cadmium (µg/l) BDL–6.10
(1.60)

3 1,7,14, 21,33 14.28

Nickel (µg/l) 1.70–24.50
(6.61)

20 7,8, 16, 19, 21,30 17.14

Chromium (µg/l) BDL to 52.40
(11.41)

50 1,4,8 8.57

HPI 0.24–222.19 (33.06) – – –

Fig. 8   Spatial distribution of HPI in the study area
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samples ranges from 1.70 to 24.50 µg/l with a mean value of 
6.61 µg/l (Table 4). 17.14% of samples exceed the permissi-
ble limit of WHO (2011). Ni-based dyes are the source of Ni 
in the groundwater of the study area (Madhav et al. 2018b). 
Cr in groundwater samples ranges from BDL to 52.40 µg/l 
with a mean value of 11.41 µg/l (Table 4). 8.57% of samples 
are above the allowable limit of WHO (2011). The applica-
tion of Cr containing dyes in textile industries is a key source 
of pollution in groundwater (Sanyal et al. 2015; Aleem et al. 
2020). A wide range of variations in the concentrations of 
heavy metals in groundwater samples is due to the difference 
in the proximity of water samples from textile industries and 
effluents settling ponds.

In Bhadohi, the HPI value for groundwater samples 
ranges from 0.24 to 222.19, with a mean value of 33.06 
(Table 4). Based on individual groundwater sample, 5% of 
samples show the HPI values above the critical index values 
of 100. While based on Edet and Offiong (2002) classifi-
cation, 51% of samples are low HPI, 17% of samples are 
medium HPI, and 32% of samples are with high HPI val-
ues. The spatial distribution of HPI shows the distribution of 
heavy metals in the study region (Fig. 8). The northern part 
of the study area shows high values of the HPI. High values 
of HPI in the north part of the study area are due to the 
industrial zones and settling ponds. The groundwater in the 
southern zone of the city did not show much pollution load. 

Table 5   Target Hazard Quotient (THQ) and Potential Human Health Risk (HI) in Bhadohi

S. NO Fe THQ Mn THQ Cu THQ Zn THQ Pb THQ Cd THQ Ni THQ Cr THQ HI

1 256.10 0.076 145.00 0.648 73.50 0.164 120.10 0.036 34.50 7.715 6.10 1.091 4.50 0.020 52.40 1.562 11.313
2 439.40 0.131 77.80 0.348 45.60 0.102 33.50 0.010 1.20 0.268 0.00 0.000 0.00 0.000 0.00 0.000 0.859
3 376.80 0.112 100.40 0.449 87.70 0.196 55.60 0.017 3.40 0.760 0.00 0.000 5.60 0.025 17.10 0.510 2.069
4 2016.30 0.601 67.50 0.302 66.50 0.149 162.00 0.048 00.00 0.000 0.20 0.036 0.00 0.000 54.60 1.628 2.764
5 482.70 0.144 113.70 0.508 54.40 0.122 78.50 0.023 65.50 14.647 0.00 0.000 3.40 0.015 10.80 0.322 15.781
6 896.00 0.267 89.70 0.401 77.50 0.173 637.60 0.190 2.30 0.514 0.50 0.089 3.30 0.015 3.00 0.089 1.740
7 431.50 0.129 99.80 0.446 99.80 0.223 99.80 0.030 32.60 7.290 3.40 0.608 24.50 0.110 11.20 0.334 9.169
8 371.50 0.111 102.00 0.456 73.20 0.164 523.40 0.156 4.50 1.006 1.20 0.215 7.80 0.035 12.30 0.367 2.509
9 124.60 0.037 89.80 0.402 109.00 0.244 334.20 0.100 0.00 0.000 0.00 0.000 3.50 0.016 7.34 0.219 1.017
10 123.40 0.037 97.50 0.436 77.00 0.172 123.40 0.037 37.10 8.296 0.70 0.125 2.30 0.010 4.24 0.126 9.240
11 28.60 0.009 67.50 0.302 65.60 0.147 77.80 0.023 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.480
12 98.80 0.029 77.60 0.347 78.00 0.174 66.40 0.020 0.00 0.000 0.20 0.036 5.50 0.025 2.18 0.065 0.696
13 245.10 0.073 66.70 0.298 77.40 0.173 46.70 0.014 1.70 0.380 0.00 0.000 0.00 0.000 0.00 0.000 0.939
14 376.20 0.112 87.50 0.391 88.70 0.198 66.50 0.020 7.80 1.744 4.50 0.805 3.60 0.016 9.45 0.282 3.569
15 145.60 0.043 77.80 0.348 81.80 0.183 40.40 0.012 5.60 1.252 0.90 0.161 4.40 0.020 5.27 0.157 2.176
16 302.00 0.090 56.70 0.254 67.50 0.151 550.00 0.164 3.50 0.783 0.00 0.000 4.80 0.021 0.00 0.000 1.463
17 200.10 0.060 52.30 0.234 44.50 0.100 33.40 0.010 2.70 0.604 0.00 0.000 2.70 0.012 0.00 0.000 1.019
18 152.80 0.046 44.50 0.199 78.20 0.175 24.50 0.007 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.427
19 112.30 0.033 100.40 0.449 77.80 0.174 77.40 0.023 4.80 1.073 1.70 0.304 7.80 0.035 6.36 0.190 2.282
20 283.70 0.085 55.60 0.249 57.80 0.129 93.50 0.028 1.20 0.268 0.00 0.000 0.00 0.000 0.00 0.000 0.759
21 345.70 0.103 66.90 0.299 68.80 0.154 98.90 0.029 5.60 1.252 3.20 0.572 23.10 0.103 3.39 0.101 2.615
22 170.80 0.051 67.80 0.303 50.50 0.113 263.40 0.079 1.20 0.268 1.50 0.268 4.50 0.020 0.00 0.000 1.102
23 147.00 0.044 41.50 0.186 65.80 0.147 166.30 0.050 3.20 0.716 0.60 0.107 2.60 0.012 1.14 0.034 1.295
24 774.90 0.231 87.60 0.392 60.60 0.136 77.50 0.023 45.50 10.174 0.50 0.089 3.10 0.014 1.56 0.047 11.106
25 1103.10 0.329 67.50 0.302 55.60 0.124 85.50 0.025 77.60 17.352 0.20 0.036 2.70 0.012 0.00 0.000 18.181
26 741.20 0.221 141.10 0.631 34.50 0.077 33.70 0.010 0.00 0.000 0.00 0.000 3.60 0.016 2.74 0.082 1.037
27 329.90 0.098 50.50 0.226 80.70 0.180 56.70 0.017 1.60 0.358 0.10 0.018 0.00 0.000 0.00 0.000 0.897
28 495.80 0.148 45.60 0.204 82.50 0.184 43.40 0.013 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.549
29 132.40 0.039 65.50 0.293 37.80 0.085 37.10 0.011 0.00 0.000 0.30 0.054 0.00 0.000 0.00 0.000 0.482
30 650.40 0.194 87.40 0.391 74.30 0.166 77.50 0.023 43.10 9.638 3.00 0.537 27.60 0.123 4.77 0.142 11.214
31 345.60 0.103 40.40 0.181 44.80 0.100 60.60 0.018 3.60 0.805 0.00 0.000 3.50 0.016 0.00 0.000 1.223
32 123.40 0.037 45.90 0.205 55.60 0.124 77.50 0.023 0.00 0.000 0.00 0.000 2.70 0.012 0.00 0.000 0.402
33 178.50 0.053 55.70 0.249 66.70 0.149 66.70 0.020 2.70 0.604 5.60 1.002 0.00 0.000 15.5 0.462 2.539
34 203.40 0.061 60.60 0.271 78.90 0.176 20.40 0.006 0.00 0.000 0.00 0.000 1.70 0.008 0.00 0.000 0.522
35 403.00 0.120 78.90 0.353 80.50 0.180 45.50 0.014 2.50 0.559 0.00 0.000 0.00 0.000 0.00 0.000 1.226
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It indicates that soil is undersaturated with heavy metals and 
not releasing heavy metals in the groundwater at these sites. 
In the south part of the city, most of the dye houses are of 
small size and scattered in agricultural fields, so groundwa-
ter of these areas shows relatively low HPI values.

The THQ has classically demonstrated the human health 
risk originated by heavy metal revelation. THQ is antici-
pated for the estimation of the probable human health hazard 
from the exposure by various researchers (USEPA 1986; 
Pawar and Pawar 2016; Madhav et al. 2020). THQ is typi-
cally a non-cancer hazard evaluation mode founded on a 
relation between the approximate dose of pollutant and the 
reference dose underneath, which will not be any signifi-
cant hazard (Tiwari et al. 2020; Mthembu et al. 2020; Raja 
et al. 2021). The values of THQs of the deliberated metals 
from the groundwater of Bhadohi are concise in Table 5. 
THQ values of heavy metals in Bhadohi were set up in the 
command of Pb > Mn > Cr > Cd > Cu > Fe > Zn > Ni. The 
THQ of metals varies from Fe (0.009–0.601 with a mean 
of 0.116), Mn (0.181–0.648 with a mean of 0.345), Cu 
(0.077–0.244 with a mean of 0.155), Zn (0.006–0.190 with 
a mean of 0.041), Pb (0.0–17.352 with a mean of 2.524), Cd 
(0.000–1.090 with a mean of 0.176), Ni (0.000–0.123 with 
a mean of 0.020), Cr (0.000–1.628 with a mean of 0.226) 
(Table 4.31). It is observed that Fe, Mn, Cu, Zn, and Ni 
metals exhibit THQ values less than 1, while Pb (34.28), 
Cd (2.85%) and Cr (5.71%) illustrating > 1 THQ values in 
the Bhadohi. The HI value of metals fluctuates from 0.402 
to 18.181 with a mean of 3.56. The high TQH value of 
Pb, Cd, and Cr are associated with the possible health risk 
(Mthembu et al. 2020). 68.57% of samples in Bhadohi show 
HI greater than one value.

Conclusion

Compositional relationships have been used to investigate 
the source of solute and prove the effective hydrogeo-
chemical procedures accountable for the various ions in the 
groundwater. After the analysis of different physicochemi-
cal parameters, it is observed that the majority of samples 
in both seasons fall under the section of alkaline earth and 
week acidic conditions (Ca–Mg–HCO3 type). Based on the 
Gibbs plot, the hydrogeochemical process of samples speci-
fied that majority of the samples are from rock dominance. 
Carbonate weathering is the main contributor to the ions in 
the aquifer. 45% samples in postmonsoon and 40% samples 
in premonsoon have NO3 values ahead of the permissible 
limit, which desires curative means earlier than consump-
tion. Human exposure to NO3 through ingestion was in the 
subsequent direct Infant > Children > Adult. The groundwa-
ter of the Bhadohi region shows the contamination of Fe, Cd, 

Ni, and Cr. Contamination of Cr, Cd and Ni in groundwater 
samples is due to the application of metal-based dyes used 
in textile industries. In Bhadohi, the mean HPI came out 
to be 33.02. 5% of samples show the HPI values above the 
critical index values of 100. It is observed that Fe, Mn, Cu, 
Zn, and Ni metals exhibit THQ values less than 1, while Pb 
(34.28%), Cd (2.85%) and Cr (5.71%) showing more than 1 
THQ. 68.57% of groundwater samples in Bhadohi offer HI 
greater than one value.
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