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Climate Change Yields Groundwater
Warming in Bavaria, Germany

Hannes Hemmerle * and Peter Bayer

Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, Halle, Germany

Thermodynamic coupling between atmosphere and ground vyields increasing aquifer
temperatures as a consequence of global warming. While this is expected to manifest
as a gradual warming in groundwater temperature time series, such continuous long-term
recordings are scarce. As an alternative, the present work examines the use of repeated
temperature-depth profiles of 32 wells in southern Germany, that were logged during
campaigns in the early 1990s and in 2019. It is revealed that the temperatures have
increased in nearly all cases. We find a moderate to good depth-dependent correlation to
trends in air temperature, which however is strongly influenced by local hydrogeological
and climate conditions. While during the last three decades, air temperatures have
increased by a rate of 0.35K (10a)™" on average, the temperature increase in the
subsurface is decreasing with depth, with median values of 0.28 K (10a)™" in 20m and
only of 0.09K (10a)™" in 60m depth. Stil, the slow and damped warming of the
groundwater bodies are remarkable, especially considering naturally very minor
temperature changes in pristine groundwater bodies and predictions of atmospheric
temperatures. This entails implications for temperature-dependent ecological and hydro-
chemical processes, and also for the heat stored in the shallow ground. Moreover, it is
demonstrated that the annual heat gain in the groundwater bodies below 15 m due to
climate change is in the range of one third of the state’s heat demand, which underlines the
geothermal potential associated with the change in natural heat fluxes at the ground
surface.

Keywords: groundwater temperature, subsurface, climate change, water resources, shallow geothermal

INTRODUCTION

Global warming is one of the most pressing challenges in the 21st century. Atmospheric climate and
temperature variations are excessively studied, and a gigantic amount of climate data are
continuously collected to delineate past warming trends and to predict future impacts of
greenhouse gas accumulation. There is much less attention to the subsurface thermal regime,
which is thermodynamically coupled with the atmosphere and thus also influenced by climate
change. In fact, borehole temperature depth-profiles that deviate from the normal geothermal
gradient served as early witnesses of regional atmospheric temperature increase (Wang and Lewis,
1992; Pollack and Chapman, 1993). This has in particular been studied in boreholes where vertical
conduction is the dominant heat transport process and groundwater flow can be neglected. In
contrast, temperature profiles recorded in wells are favored to infer the role and intensity of vertical
groundwater flow (Bredehoeft and Papaopulos, 1965; Sorey, 1971; Taniguchi, 1993; Taniguchi et al.,
1999; Bense et al., 2017; Kurylyk et al., 2019; Kurylyk and Irvine, 2019; Li et al., 2019). The use of
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natural temperature variations in aquifers has also been
recognized as a precious tracer to understand groundwater
flow systems, in particular when interacting with surface
waters (Constantz, 2008; Rau et al., 2010; Molina-Giraldo
et al., 2011; Saar, 2011; Coluccio and Morgan, 2019; Kaandorp
et al., 2019).

Temperature profiles measured in wells reflect spatially and
temporally varying heat inputs in aquifers from the surface and
thus can be used to examine thermal coupling at the ground
surface (Gunawardhana and Kazama, 2011; Kurylyk et al., 2013;
Burns et al., 2016; Bense and Kurylyk, 2017). Especially when the
shallow subsurface is dominated by horizontal flow, changes in
atmospheric temperatures and land use represent thermal signals
that are conduced to the aquifer and become visible in well-logs.
These changes are pronounced in cities, where accelerated heat
flux from urban warming, sealed ground, and buried
infrastructures yields large scale subsurface urban heat islands
(Ferguson and Woodbury, 2004; Menberg et al., 2013; Zhu et al.,
2015; Benz et al.,, 2016; Epting et al., 2017; Bayer et al,, 2019;
Hemmerle et al., 2019), and urban, industrial and waste sites are
revealed to cause the most prominent local heat anomalies in
Central European aquifers (Tissen et al., 2019). In less-disturbed
rural areas, groundwater temperatures are reported to slowly
increase as well, which is obviously the response of the shallow
ground to recent climate change (Maxwell and Kollet, 2008;
Bloomfield et al., 2013; Kurylyk et al., 2014; Menberg et al.,
2014; Colombani et al., 2016). In comparison to atmospheric
temperature recordings, however, continuously monitored long-
term time series of groundwater temperatures are scarce, often
strongly superimposed by local effects and thus our current
picture of subsurface warming due to climate change is not
very clear. As alternative means, repeated transient
temperature logs in wells can be used (Bense and Kurylyk,
2017; Benz et al, 2018a). Conductive heat transport through
the ground and aquifer is slow, however, the time period between
two measurements has to be in the order of years and ideally
decades.

In this study, the main objective is to reveal subsurface
temperature variations. We report the findings of rare well
temperature profiles measured again after more than 25 years.
Focus is set on a large spatial coverage with several wells in order
to reveal regional groundwater warming and to minimize the
fingerprint of local effects. The wells are all located in the country
of Bavaria in southern Germany, where climate change effects on
groundwater are broadly discussed. As in many other countries,
aquifers represent the major source of freshwater and thus any
factors that impair groundwater reservoirs are of prime
hydrological interest. Therefore, related work and recent
reviews of groundwater climate change focus mainly on
change of groundwater recharge and availability (Earman and
Dettinger, 2011; Green et al,, 2011; Stoll et al., 2011; Alam et al,,
2019; Bloomfield et al., 2019; Zhang et al., 2020). Potential
hydrochemical effects from climate-driven shifts in
groundwater levels on contaminant mobilization are stressed
by Jarsjo et al. (2020). The consequences of ongoing shallow
groundwater warming are only rarely discussed but manifold
(Riedel, 2019). Among these are fundamental changes to
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microbial activity and ecosystems in groundwater that rely on
long-term stable thermal conditions (Klgve et al., 2014; Griebler
et al, 2019), as well as potential threats on spring and cave
ecosystems (Jyvisjdrvi et al, 2015; Mammola et al., 2019).
Leonhardt et al. (2017) emphasize for the springs in the
Bavarian National Parks that climate change effects are most
critical, and just recently therefore a program of long-term
monitoring of biotic and abiotic data including temperature at
15 of these springs has been initiated by the authorities.

In the following, we describe the temperature profile
measurements in Bavarian wells, which serve as the basis of
this work. The presented data preparation is tailored to the
purpose of this study, which is on quantifying the long-term
thermal evolution of the aquifers on the country scale. This is
examined by including available air temperature records and
comparing the changes in the atmosphere with those found in the
subsurface. Furthermore, in order to elucidate the heat
accumulation associated with climate induced warming of the
subsurface, also the change of the regional geothermal potential is
assessed.

METHODS AND DATA

Groundwater Temperature Data
Groundwater temperature data is recorded in Bavaria by logging

temperatures in observation wells using a water level meter with a
temperature sensor. Data was gathered during the period from 1992
to 1994 and in 2019. During the 1992-4 period, wells were sampled
every 3 months on an irregular basis within one year, so that up to
four measurements were obtained for each well. These
measurements were performed by the Landesamt fir Umwelt
Bayern (LfU Bayern), which is the environmental state office of
the federal state of Bavaria in Germany. In 2019, the same set of
wells were measured in April and July/August field campaigns using
a water level meter type 120 - LTC from HT Hydrotechnik GmbH.
For the 2019 dataset, precision and accuracy of the temperature
sensor is 0.1 K. For the 1992—4 sampling campaign, the precision is
also 0.1 K. The accuracy for this dataset is assumed to be in the same
magnitude, assuming the use of standard devices even though no
detailed information on the applied loggers is preserved. The vertical
resolution of sampling was highest close to the surface where
temperature variations are commonly strongest. Temperatures
were recorded in 1 m steps above 20 m, in 2 m steps between 20
and 40 m and in 10 m steps below 40 m for the 1992-4 campaign. In
2019, temperature was sensed at 0.5 m intervals above 10 m, at 1 m
intervals between 10 and 40 m, at 2 m intervals between 40 and 60 m
and at 5 m intervals below 60 m. For further analysis, all measured
temperatures were then interpolated linearly at 1 m resolution.
Initially the data set measured in 1992-4 covered
347 temperature-depth profiles (209 of the wells are shallower
than 10 m). From these, 95 wells had a complete seasonal record
of four seasonal measurements. Temperature data from these 95
wells have been made available by the LfU Bayern for this study.
Out of these, 46 wells were measured again in 2019. The other
wells were either shallower than 15 m, have been dismissed from
the observation well network (renaturalised), could not be found
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FIGURE 1 | (A) Map of the main hydrogeological units and the location of

the 32 groundwater temperature (GWT) observation wells and the 23 air
temperature (AT) stations selected for this study. Major cities and rivers are
indicated by black stars and blue lines, accordingly. (B) Arithmetic

annual mean air temperatures from 1960 to 2018 for 23 stations in Bavaria
(blue dots and lines). Temperatures are normalized to the respective mean
temperature of the period from 1960 to 1989 for each station. AT, is the
decadal temperature change calculated by a linear least square regression
with the Pearson correlation coefficient (r) and p-value (p).

in the field or could not be accessed (no access permission for
wells on private property).

For this study we applied a threshold for seasonal
temperature variation of 0.5K below 20m. 12 wells that
exceeded this threshold were cut for further analysis. These
wells showed inconsistencies or clearly revealed the effect of
disturbing processes either in the 1992-4 or in the 2019
measurements. In one of the wells abnormal changes of more
than 4 K between the 1990s and 2019 period together with an
inconsistent signal in 2019 were related to strong super
positioning of local anthropogenic disturbances and thus
these measurements were also excluded. At one well, the
groundwater table was below 100 m depth, and in one well
the probe got stuck in both 2019 measurements after less than
2 m below groundwater level. These two wells have also been
excluded for further analysis.

The 32 remaining observation wells are located in different
hydrogeological settings and distributed all over Bavaria. A map
showing the location of the observation wells and air
temperature stations is given in Figure 1A. Temperature-
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depth profiles are available as Supplementary Material to
this article and are additionally archived in World Data
Center PANGAEA.Temperature-depth profiles are also
available at: https://doi.pangaea.de/10.1594/PANGAEA.
923529.

Air Temperature Data

To derive atmospheric temperature trends, we used
arithmetic annual mean values from 23 air temperature
stations in Bavaria. These data are provided by the
Climate Data Center (CDC) run by the Deutscher
Wetterdienst (DWD). According to recommendation of
the World Meteorological  Organization (World
Meteorological Organization, 2017) air temperature data
was split into two 30-year periods. Herein after referred
to as reference period 1960-1989, and study period
1990-2019. Air temperature stations were selected for
having consistent, gap-free records from 1960 onwards.
Detailed descriptions and metadata for each weather
station can be found on the accessed FTP server by the DWD.

Theoretical Geothermal Potential
Temperature variations in the subsurface also change the

total thermal energy stored in the subsurface. From the
perspective of shallow geothermal energy utilization, this
energy determines the theoretical geothermal potential
(Bayer et al.,, 2019). This represents the heat in place and
can be calculated based on the caloric equation of state for a
water saturated homogeneous solid:

E=[nc¢+ (1-n-¢]-V-T

where n is the porosity of the solid, ¢,, and ¢, in k] (m’K) ! are

the volumetric heat capacities of water and solid, V (m?) is
the reservoir volume and T (K) is the temperature of the
reservoir. This equation can be condensed by distinction of a
component related to material properties,
m=mn-c,+ (1-n)-c, and a part describing the thermal
field of the reservoir, t = V- T. If we assume a laterally
homogeneous reservoir where temperature only varies
with depth (z), t becomes r=A- J T(z)dz = A-6, where A
is the area and 6 is the integral of the temperature over depth.
Thus, the heat in place is E=m-A-0. Accordingly, the
change of the thermal energy stored in the subsurface
with constant material properties can be described as AE (1) =
m-A- 6.

We also tested a different approach where the arithmetic mean
difference profile is linearly fitted to each observation profile. This
approach is based on standard statistical measures, as related
spatial temperature profile analysis is scarce, there is no earlier
work known following the same approach. In this model, profiles
are calibrated for the lowest root-mean squared error (RMSE)
between the reference profile and the measured AT profiles at each
station. This allows for the possibility to get both a spatial and a
total depth coverage at each observation well. The resulting profiles
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FIGURE 2 | (A) Differences (AT) between the temperature profiles measured in 2019 vs. the mean signal of the time period from 1992 to 1994 (gray lines). The
arithmetic mean difference (red line) is calculated as rolling mean with a window of 5 m and is displayed as red line along with the standard deviation (10) as red
transparent area. (B) Decadal temperature change rate (AT ;o) for air temperature (AT, blue box) and groundwater temperature at different depths (GWT, red boxes). AT
represent the slopes of ordinary least squared regression on annual mean values from 1990 to 2018. GWT rates are calculated from temperature-depth profiles
measured in 2019 and 1992-1994. Whiskers are drawn for values smaller than 1.5 magnitudes of the interquartile range. Oultliers are shown as dots. (C) Count of
measurements at respective depths.

were integrated over the depths between 15 and 100m and
afterward interpolated via inverse distance weighting on a 1km
x 1 km grid with a total of 70,610 grid cells for the state of Bavaria.

RESULTS AND DISCUSSION

Recent Variations in Air Temperature

Recent trends in air temperature are calculated from annual mean
values of 23 air temperature stations, uniformly distributed over
Bavaria (Figure 1A). Figure 1B shows the temperature record
since 1960 normalized by the corresponding mean temperature of
the reference period from 1960 to 1989 for each station. Annual
mean air temperature records for individual stations exhibit a
high year-to-year variability of up to 3K, but also a high
consistency of the trendlines among each other. This indicates
that relative air temperature changes behave uniformly within the
studied area and are forced by a large-scale climatic regime.
Calculating a linear regression over longer periods allows to
deduce the decadal temperature change rate (ATj,), which is
the slope of the linear regression per decade. For the study period
of 1990-2019, the linear regression of these air temperature
stations yields a slope of 0.35 + 0.11 K (10a)”'. Compared to
the linear regression slope of the previous 30 years period of
0.14 + 0.07 K (10a) ", the rate of temperature change for the study
period is significantly elevated. The change in slope of the linear
regression is consistent with the median temperature change of
1.06 K between 1990 and 2019 and the subsequent 30 years
(1960-1989), which results in a decadal temperature change of
also 0.35K (10a)™".

Recent Variations in Groundwater

Temperature

To reveal subsurface temperature variations, we will first describe
recent groundwater temperature variations in the wells
individually. Recorded temperature profiles reflect a limited
section of the subsurface. This section is limited by the
groundwater table toward the top and the drilling depth of the
observation well to the bottom. From the seasonal measurements
1992-4 period, we can confer seasonal temperature variation by
depth. For depths shallower than 15 m, seasonal variations are
higher than 0.1 K and thus measurable. Supplementary Figure
S1 shows the mean values of the ranges (min-max differences)
per depth at the selected 32 stations.

Vertical temperature changes below 15m commonly follow
the local geothermal gradient according to the basal heat flux
from the interior of the Earth. They also conserve thermal
signatures over a longer time period, e.g., from land-surface
temperature changes (e.g., in urban areas (Banks et al., 2009)
as well as from changes in regional groundwater temperatures —
which closely reflects mean annual air temperatures in the
recharge area (Burns et al, 2017)). Changes in repeated
temperature profiles measured over timeframes of more than a
year can therefore reveal long-term temperature variations, such
as those related to global warming. The temperature difference,
AT(z), between the 1992-4 and the 2019 period is calculated from
mean temperature profiles for each time period (cf,
Supplementary Figure S2). This yields aT-profiles for each
individual station depicted in Figure 2A. To deal with
alternating sampling dates in the 1992-4 period and for better
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comparability, the temperature change is normalized to the
decadal temperature change rate (aTjo) with respect to the
time span between the periods. The decadal temperature
change rates per depth are depicted as boxplots in Figure 2B.
At a depth of 20 m, AT, varies between —0.01 and 0.49 with a
mean of 0.28 K (10a)%. Toward greater depths, the mean AT,
decreases to 0.16, 0.09, 0.07, 0.05K (10a)™" at 40, 60, 80 and
100 m depth, respectively.

The proposed rates are in line with recent single depth
groundwater observations from the western adjacent federal
state of Baden-Wiirttemberg and observations in Austria in
the south. For Baden-Wiirttemberg, Riedel (2019) reported
ATy, rates of 0.1-04K (10a)™' based on a state-wide
groundwater quality dataset for the period from 2000 to 2015.
Riedel (2019) also found a quasi-depth dependency with
temperatures in spring waters averaging at a higher AT}, rate
of 0.3 K (10a)~! over a rate of 0.2K (10a)”" in groundwater. In
Austria, Benz et al. (2018b) observed a slightly higher
temperature change rate of 0.7 + 0.8 K over the 20-year period
from 1994 to 2013 (AT} ~ 0.37 + 0.42 K (10a)™%). In both studies,
temperatures change rates are not linked to depths. Despite this it
has to be noted that the average measurement depth in the
Austrian wells is relatively shallow at 7 + 4m below ground
surface.

Correlation Between Air and Groundwater
Temperature Change Rates

To infer the correlation between air and groundwater
temperature variations, the air temperature at each
observation well is calculated by inverse distance weighting

of the five nearest air temperature stations. Figure 3 shows the
temperature change per decade for each of the 32 observation
wells for air temperature and the mean value of 10m
increments of the individual temperature profiles. For the
respective depths vs. air temperatures, Pearson correlation
coefficients (r) indicate a moderate but robust correlation
with values between 0.4 and 0.6. P-values exhibit that
statistical significance is increasing with depth despite a
high-variability. In general, higher temperature change rates
in air temperature are reflected by higher temperature change
rates in the subsurface. However, local variations are high both
in the penetration depth of the signal and in absolute values.
Note that air temperature change rates have a low standard
deviation of 0.8 K, which makes it hard to identify distinct
variations between temperature stations, as the atmospheric
temperature signal is more homogeneous than that in the
subsurface. The diffuse signal present in the subsurface is
hereby hard to infer with the minor variations in air
temperatures (Figure 3A). The correlation metrics are
highest for the ATj, at 100 m and inferred air temperature.
Assuming a process where the thermal field of the subsurface is
mainly altered by a change in ground surface conditions (e.g.,
for shallow and unconfined aquifers), we would expect the
contrary with decreasing metrics at greater depth induced by
changing ground surface conditions. Obviously, correlating
surface or air temperatures directly to subsurface temperatures
presumes that changes in the temperature profile are a result of
downward vertical heat transfer (advective or diffusive). If this
is not the case, temperatures especially at greater depths could
be altered by lateral heat transfer associated with the regional
groundwater flow regime (Taniguchi et al., 1999; Zhu et al,,
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TABLE 1 | Heat content model parameters for the minimum, medium, and
maximum scenario.

Parameter Abbrv.  Unit Min Median Max
Area A km? 70,610
Vol. heat capacity of water Cw kdJ 4,190
MKy
Vol. heat capacity of the solid Cs kd 1,900 2,200 2,500
Mm°K)
Porosity n - 0.05 0.1 0.15
Energy stored per year AE PJ 155 184 212
Standard deviation 1o PJ 125 149 171
Energy stored per year (spatial AE PJ 208 248 285
IDW)
Root-mean squared error (spatial RMSE  PJ 40 47 54
IDW)

2015; Burns et al., 20165 Bense et al., 2020). In this case the
temperature profile would carry an integrated signal
dominated by annual mean temperatures of the recharge
area. However, despite the potential influence of local
hydrogeological conditions, it is also possible that the
observed discrepancy is an artifact of the statistical analysis
as the number of observations decreases with depth (from 24
to 16).

The substantial number of wells included in this study allows
robust average estimates. Compared with the corresponding
aboveground air temperatures, as expected, the decadal
temperature increase is dampened in the subsurface. The
median values for Bavaria are AT, = 0.35K for the
atmosphere, 0.28 K at 20 m and 0.09K at 60 m depth. This
means that at the deepest level, the changes, however, are
close to measurement accuracy. Temperatures in air and
subsurface show a moderate to good correlation, with higher
scattering of groundwater than air temperatures. Major
tendencies of air temperature are also reflected in the
subsurface temperature record. This supports a good statistical
basis of the measured data, even without detailed analysis of the
site-specific heat transport processes.

Shallow Geothermal Potential of Recent

Temperature Variations

The changes in subsurface temperatures also constitute an increase
in thermal energy stored in the subsurface in response to recent
shifts in the thermal regime of surface conditions. This additional
heat can be accessed via shallow geothermal systems and thus
increases the theoretical geothermal potential of the shallow
subsurface. To accurately quantify this additional heat, both
geological material properties and the thermal field have to be
characterized at a high level. However, thermal properties such as
heat capacity do not vary over a broad range in geological media
(Stauffer et al., 2013). If we assume bulk material properties and
superimpose an arithmetic mean AT profile over the depth interval
between 15 and 100 m below surface, we can calculate a rough
estimate of the magnitude of the heat flow into the subsurface.
Table 1 lists the energy stored per year for a minimum, a maximum
and median (50%) assumption of porosity (0.5-0.15) and

Climate Change Groundwater Warming Bavaria

volumetric heat capacity of the solid (1900-2,500 k] (m’K)7™).
The energy stored per year varies between 155 (+125) and 212
(+171) PJ between the minimum and maximum scenarios (+10).
For the median scenario the thermal energy stored by climate
change in the subsurface per year equals 184 (+149) PJ. Compared
to the primary energy demand (1944 PJ) and the heating demand
(669.7 PJ) in 2017 (Ebert and Voigtlinder, 2019), the energy stored
per year in the subsurface for the median scenario equals 9.5% of
the annual primary energy demand or 27.5% of the heating
demand of Bavaria. This simplistic calculation, however, does
not consider spatial variations and relies on the arithmetic
mean differences of all profiles.

For an alternative approach where the arithmetic mean
difference profile is linearly fitted to each observation profile,
stored energies for the minimum and maximum scenario are 208
and 285 PJ with RMSE:s of 40 and 54 PJ, accordingly. The median
scenario yields a thermal energy input of 248 PJ with an RMSE of
47 PJ, which would equal 12.8% of the Bavarian primary energy
demand or 37% of the heating demand. Supplementary Figures
§3, S4 display the profile fitting and the spatial distribution of
interpolated groundwater and air temperatures. Note that the
spatial coverage of the observation wells with respect to the area
of Bavaria is insufficient to produce fully reliable numbers, but it
provides a first rough estimate of the order of magnitude of
energy stored in the subsurface annually. Still, the presented
spatial approach offers the opportunity to employ more
precise regionalized material parameters for heterogeneous
hydrogeological facies. In essence, we found the thermal
energy stored by climate change in the subsurface per year to
be in the magnitude of 10% of the total Bavarian primary energy
demand, or one third of the heating demand. This continuous
heat transfer represents an enormous replenishing resource that
is fueled by climate change. The results from this local study are
expected be applicable in similar magnitudes on a global scale as
observed atmospheric temperature trends in Bavaria are in line
with the global trend and the thermal connection between the
surface and shallow subsurface has been proven to be robust also
on a global scale (Benz et al., 2017).

CONCLUSION

The scope of this study was to extract regional long-term trends of
groundwater temperature, and for this purpose, well profiles re-
measured after up to 27 years were compared to each other. In
order to remove as much as possible momentary, local variability,
we compared profiles that were obtained as averaged logs from
repeated campaigns throughout each year. The total number of
suitable wells was 32 which cover broadly the entire state of
Bavaria, Germany, and these offered a substantial insight into the
shallow thermal regime in the subsurface. Clearly, each profile was
different, influenced by the local hydrogeological, climatic and
potentially anthropogenic conditions. However, short term
variability and seasonality was shown to be marginal for these
wells beneath 15m, and this is where long-term climate change
left an observable thermal imprint. Nearly all wells revealed increasing
groundwater temperatures. The increase and the discrepancy among
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the well profiles was largest at shallow depth, and a maximum
warming of 1.5K was observed. Only one well showed a slight
cooling by 02K, but on average, 0.7 K warmer groundwater is
found at 15 m depth which declines with depth along the profile.

Over the past ~30 years, the warming climate transferred
heat in the subsurface at a rate that is estimated roughly more
than one quarter of the state’s annual heating demand. Rising
ground (water) temperatures increase shallow geothermal
system efficiency, and accelerated ground heat flux
represents a form of thermal recharge of shallow
geothermal reservoirs. This ground heat gain thus can be
considered as favourable for geothermal use. In contrast,
groundwater ecosystems used to nearly static thermal
conditions need to adjust and may be under increasing
stress. Even if the changes are considered marginal so far,
and impacts are considered acceptable, the groundwater
temperature will further increase as delayed response to the
past temperature changes, and are likely to rise further in
response to future atmospheric warming.
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